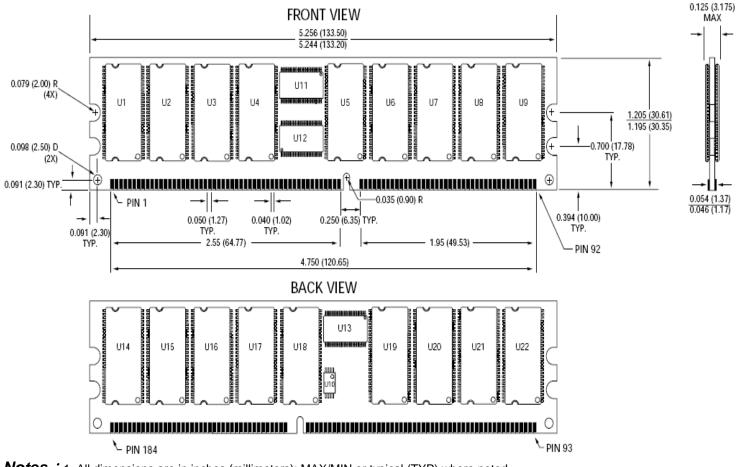
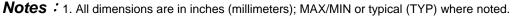


1. Description

The SP001GBRDE400001 is a 64M x 8bits Double Data Rate SDRAM high-density for DDR-400.The SP001GBRDE400001 consists of 16pcs CMOS 64x8 bits Double Data Rate SDRAMs in 66 pin TSOP package, and a 2048 bits serial EEPROM on a 184-pin printed circuit board. The SP001GBRDE400001 is a Dual In-Line Memory Module and is intended for mounting into 184-pin connector sockets. Synchronous design allows precise cycle control with the use of system clock. Data I/O transactions are possible on both edges of DQS. Range of operation frequencies, programmable latencies allow the same device to be useful for a variety of high bandwidth, high performance memory system applications.

2. Features


- Double--data--rate architecture; two data transfers per clock cycle
- Bidirectional, data strobe (DQS) is transmitted/received with data, to be used in capturing data at the receiver
- DQS is edge--aligned with data for READs; center--aligned with data for WRITEs
- Differential clock inputs (CK and /CK)
- DLL aligns DQ and DQS transitions with CK transitions
- Commands entered on each positive CK edge; data and data mask referenced to both edges of DQS
- Four internal banks for concurrent operation
- Registered inputs with one-clock delay
- Phase-lock loop (PLL) clock driver to reduce loading
- Supports ECC error detection and correction
- Data mask (DM) for write data
- Burst lengths: 2, 4, or 8
- AUTOPRECHARGE option for each burst access
- Auto Refresh and Self Refresh Modes
- JEDEC standard 2.5 V (SSTL_2 compatible) I/O
- 66pin TSOP II Leaded & Pb-Free (RoHS compliant) package



3. Module Specification

ltem	Specification
Capacity	1024MByte
Physical Bank(s)	2
Module Organization	128M x 72bit
Module Type	Registered
Speed Grade	PC-3200 / (DDR400)
Voltage Interface	SSTL_2
Power Supply Voltage	2.6V±0.1V
Burst Lengths	2,4,8
DRAM Organization	64M x 8bit DDR SDRAM
PCB Layer	6Layers
Contact Tab	184pin GOLD Flash Plating
Serial PD	Support

4. Simplified Mechanical Drawing with Keying Positions

O SILICON POWER

SP001GBRDE400O01 184pin DDR 400 Registered DIMM

5. Pinouts

Pin Num	Pin Name														
01	VREF	24	DQ17	47	DQS8	70	VDD	93	VSS	116	VSS	139	VSS	162	DQ47
02	DQ0	25	DQS2	48	A0	71	NC	94	DQ4	117	DQ21	140	DM8	163	NC
03	VSS	26	VSS	49	CB2	72	DQ48	95	DQ5	118	A11	141	A10	164	VDDQ
04	DQ1	27	A9	50	VSS	73	DQ49	96	VDDQ	119	DM2	142	CB6	165	DQ52
05	DQS0	28	DQ18	51	CB3	74	VSS	97	DM0	120	VDD	143	VDDQ	166	DQ53
06	DQ2	29	A7	52	BA1	75	*/CK2	98	DQ6	121	DQ22	144	CB7	167	NC/A13
07	VDD	30	VDDQ	53	DQ32	76	*CK2	99	DQ7	122	A8	145	VSS	168	VDD
08	DQ3	31	DQ19	54	VDDQ	77	VDDQ	100	VSS	123	DQ23	146	DQ36	169	DM6
09	NC	32	A5	55	DQ33	78	DQS6	101	NC	124	VSS	147	DQ37	170	DQ54
10	/RESET	33	DQ24	56	DQS4	79	DQ50	102	NC	125	A6	148	VDD	171	DQ55
11	VSS	34	VSS	57	DQ34	80	DQ51	103	NC	126	DQ28	149	DM4	172	VDDQ
12	DQ8	35	DQ25	58	VSS	81	VSS	104	VDDQ	127	DQ29	150	DQ38	173	NC
13	DQ9	36	DQS3	59	BA0	82	VDDID	105	DQ12	128	VDDQ	151	DQ39	174	DQ60
14	DQS1	37	A4	60	DQ35	83	DQ56	106	DQ13	129	DM3	152	VSS	175	DQ61
15	VDDQ	38	VDD	61	DQ40	84	DQ57	107	DM1	130	A3	153	DQ44	176	VSS
16	*CK1	39	DQ26	62	VDDQ	85	VDD	108	VDD	131	DQ30	154	/RAS	177	DM7
17	*/CK1	40	DQ27	63	/WE	86	DQS7	109	DQ14	132	VSS	155	DQ45	178	DQ62
18	VSS	41	A2	64	DQ41	87	DQ58	110	DQ15	133	DQ31	156	VDDQ	179	DQ63
19	DQ10	42	VSS	65	/CAS	88	DQ59	111	CKE1	134	CB4	157	/S0	180	VDDQ
20	DQ11	43	A1	66	VSS	89	VSS	112	VDDQ	135	CB5	158	/S1	181	SA0
21	CKE0	44	CB0	67	DQS5	90	NC	113	*BA2	136	VDDQ	159	DM5	182	SA1
22	VDDQ	45	CB1	68	DQ42	91	SDA	114	DQ20	137	CK0	160	VSS	183	SA2
23	DQ16	46	VDD	69	DQ43	92	SCL	115	NC/A12	138	/CK0	161	DQ46	184	VDDSPD

NOTE : 1. * : These pins are not used in this module.

2. Pin 115 is No Connect for 256MB, or A12 for 512MB and 1GB.

3. Pin 167 is NC for 256MB, 512MB, and 1GB, or A13 for 2GB.

6. Pin Description

SYMBOL	TYPE	DESCRIPTION
CK, /CK	Input	Clock: CK and /CK are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK and negative edge of /CK. Output data
	loout	(DQs and DQS /DQS) is referenced to the crossings of CK and /CK.
/RAS, /CAS, /WE	Input	Command Inputs: /RAS, /CAS and /WE (along with /S) define the command being entered.
CKE	Input	Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input buffers and output drivers. Taking CKE Low provides Precharge Power-Down and Self Refresh operation (all banks idle), or Active Power-Down (row Active in any bank). CKE is synchronous for power down entry and exit, and for self refresh entry. CKE is asynchronous for self refresh exit. CKE must be maintained high throughout read and write accesses. Input buffers, excluding CK, CK, and CKE are disabled during power-down. Input buffers, excluding CKE, are disabled during self refresh.
/S0-/S1	Input	Chip Select: Enables the associated SDRAM command decoder when low and disables the command decoder when high. When the command decoder is disabled, new commands are ignored but previous operations continue. Rank 0 is selected by S0; Rank 1 is selected by S1
DM0-DM8	Input	Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH coincident with that input data during a Write access. DM is sampled on both edges of DQS. Although DM pins are input only, the DM loading matches the DQ and DQS loading. For x8 device, the function of DM or RDQS/RDQS is enabled by EMRS command.
BA0 - BA2	Input	Bank Address Inputs: BA0 and BA1 for 256 and 512Mb, BA0 - BA2 define to which bank an Active, Read, Write or Precharge command is being applied. Bank address also determines if the mode register or extended mode register is to be accessed during a MRS or EMRS cycle.
A0 - A12	Input	Address Inputs: Provided the row address for Active commands and the column address and Auto Precharge bit for Read/Write commands, to select one location out of the memory array in the respective bank. A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by BA0, BA1. The address inputs also provide the op-code during Mode Register Set commands.
DQ0-DQ63	Input/Output	Data bit Input/ Output: Bi-directional data bus.
CB0-CB7	Input/Output	ECC check bits.
DQS0-DQS8	Input/Output	Data Strobe: output with read data, input with write data for source-synchronous operation. Edge-aligned with read data, center-aligned with write data. For Rawcards using x16 orginized DRAMs DQ0-7 connect to the LDQS pin of the DRAMs and DQ8-17 connect to the UDQS pin of the DRAM.
NC		No Connect: No internal electrical connection is present.
Vddq	Supply	Power supplies for the DDR SDRAM output buffers to provide improved noise immunity. For all current DDR unbuffered DIMM designs, VDDQ shares the same power plane as VDD pins
Vdd, Vss	Supply	Power and ground for the DDR SDRAM input buffers, and core logic. VDD and VDDQ pins are tied to VDD / VDDQ planes on these modules.
Vref	Supply	Reference voltage for SSTL_2 inputs.
SDA	Input/Output	This bidirectional pin is used to transfer data into or out of the SPD EEPROM. A resistor must be connected from the SDA bus line to VDD to act as a pullup on the system board.
SCL	Input	This signal is used to clock data into and out of the SPD EEPROM. A resistor may be connected from the SCL bus time to VDD to act as a pullup on the system board.
VDDSPD	Supply	Power supply for SPD EEPROM. This supply is separate from the VDD / VDDQ power plane. EEPROM supply is operable from 1.7V to 3.6V.
SA0-SA2	Input	These signals and tied at the system planar to either VSS or VDD to configure the serial SPD EERPOM address range.
/RESET	Input	The /RESET pin is connected to the /RST pin on the register and to the OE pin on the PLL. When low, all register outputs will be driven low and the PLL clocks to the DRAMs and register(s) will be set to low level (The PLL will remain synchronized with the input clock.